14-17 November 2019, Vienna, Austria

EMUC19
Implementing multidisciplinary strategies in genito-urinary cancers

11th European Multidisciplinary Congress on Urological Cancers

In conjunction with the
• 8th Meeting of the EAU Section of Urological Imaging (ESUI)
• European School of Urology (ESU)
• EMUC Symposium on Genitourinary Pathology and Molecular Diagnostics (ESUP)

www.emuc19.org
Intraprostatic injection of Liproca® Depot (2-hydroxy flutamide) in patients with localised prostate cancer

Laurence Klotz1, Niklas Axén2, Stefan Grudén2, Charlotta Gauffin2, Jonathan Giddens3, Peter Incze4, Kenneth Jansz5, Mindaugas Jievaltas6, Ricardo Rendon7, Albertas Ulys8, Anders Bjartell2,9, Teuvo Tammela10

1Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Canada, 2LIDDS AB, Uppsala, Sweden, 3Jonathan Giddens Medicine Professional Corp, Brampton, Canada, 4Oakville Trafalgar Memorial Hospital, Oakville, Canada, 5Burlington Professional Centre, Burlington, Canada, 6Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania, 7Centre of Applied Urology Research, Halifax, Canada, 8National Cancer Institute, Vilnius, Lithuania, 9Department of Translational Medicine, Skåne University Hospital, Sweden, 10Tampere University Hospital, Tampere, Finland,
Disclosures

This study was funded by LIDDS AB, Sweden

Laurence Klotz, Jonathan Giddens, Peter Incze, Kenneth Jansz, Mindaugas Jievaltas, Ricardo Rendon, Albertas Ulys, Teuvo Tammela:

Received clinical trial funding for participation

Niklas Axén, Stefan Grudén, Charlotta Gauffin:

LIDDS AB

Anders Bjartell:

Board member LIDDS AB
Introduction

Liproca® Depot
Novel depot formulation of 2-hydroxyflutamide, in a calcium sulphate suspension (NanoZolid)

Why Liproca® Depot?
- Intraprostatic injection -> Local treatment
- Slow-release formula -> Long lasting
- Safe -> No systemic hormonal effects
- Convenient procedure -> Similar to a prostate biopsy
Liproca Depot targets Active Surveillance (AS) patients with intermediate risk prostate cancer

- Gleason 3+4 or Gleason 4+3 or PSA 10-20 ng/ml
- Very low – Low Risk
- Intermediate Risk (35%)
- High Risk
- Locally advanced
- Metastatic

Liproca Depot

Active Surveillance

Partial Gland Ablation

Radical treatment (surgery and/or radiotherapy)

A future innocuous treatment with minimal side-effects as a companion to AS to delay the need for definitive therapy
LPC-004 study design

- 61 patients on Active Surveillance in
 - Canada
 - Finland
 - Lithuania

- Dose Levels
 - 35% of prostate volume (10 pat)
 - 45% of prostate volume (10 pat)
 - 16 mL (21 pat)
 - 20 mL (20 pat)

- Single dose intraprostatic injection
- 6 months follow-up
- Open label study: second injection after PSA recurrence (12 pat)

Limitations to the study design:
- No control group
- No pathology data
Objectives

Primary
- To define the highest tolerable dose of Liproca® Depot
- To determine the level of PSA reduction at Month 5 for the doses in Part II

Secondary
- PSA reduction at all timepoints
- Quality of Life
- Safety
PSA Response

- Max reduction on PSA at Month 2-4
 - 16 mL: 67% (Month 2)
 - 20 mL: 50% (Month 4)
- Mean PSA decrease at nadir
 - 16 mL: 35%
 - 20 mL: 31%
- PSA reduction at Month 6
 - 16 mL: 48% responders
 - 20 mL: 35% responders

Relationship between serum PSA response and anti-cancer effect remains to be shown in phase III
Sub-group analysis

Low risk patients
Gleason score: ≤ 6
PSA: < 10 ng/ml

Intermediate risk patients
Gleason score: 7 and/or
PSA: 10-20 ng/ml

➢ A larger proportion of intermediate risk patients are PSA responders
I-PSS score mild to moderate

Despite large drug volumes injected, I-PSS score was mild to moderate in all groups

0 - 7: Mild
8 - 19: Moderate
20 - 35: Severe
<table>
<thead>
<tr>
<th></th>
<th>Treatment Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35 vol% N=10</td>
</tr>
<tr>
<td>Any AE leading to withdrawal</td>
<td>0</td>
</tr>
<tr>
<td>Any AE leading to death</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Any AE</td>
<td>18</td>
</tr>
<tr>
<td>Most common Adverse Reactions</td>
<td></td>
</tr>
<tr>
<td>Dysuria</td>
<td>1</td>
</tr>
<tr>
<td>Haematuria</td>
<td>5</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>3</td>
</tr>
<tr>
<td>Prostatitis</td>
<td>2</td>
</tr>
<tr>
<td>Serious Adverse Reactions</td>
<td></td>
</tr>
<tr>
<td>Urosepsis</td>
<td>1</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>1</td>
</tr>
<tr>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>Prostatitis</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

➢ A single intraprostatic injection of Liproca Depot reduced PSA levels in 60%, and in 40% for > 6 months
➢ No systemic hormonal adverse reactions
➢ Study confirms the long-term controlled release using the NanoZolid technology
➢ Safe and well tolerated
➢ 84% of patients were amenable to a 2nd injection of Liproca Depot

This approach warrants further evaluation as an adjunct to active surveillance in men with intermediate risk prostate cancer.
Thanks to patients and to all investigators

Laurence Klotz Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
Jonathan Giddens Jonathan Giddens Medicine Professional Corp, Brampton, Canada
Peter Incze Oakville Trafalgar Memorial Hospital, Oakville, Canada,
Kenneth Jansz Burlington Professional Centre, Burlington, Canada,
Mindaugas Jievaltas Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania,
Ricardo Rendon Centre of Applied Urology Research, Halifax, Canada,
Albertas Ulys National Cancer Institute, Vilnius, Lithuania
Teuvo Tammela Tampere University Hospital, Tampere, Finland,