PRESS RELEASE

June 28, 2018

Saniona awarded grant of SEK 1.4 million for Kv7 program

Saniona, a leading biotech company within ion-channel research, today announced that it has received a research grant of DKK 1 million (SEK 1.4 million) under the Danish Innovation Fund in relation to the Kv7 program for development of a new medicine for treatment of Painful Bladder Syndrome (PBS).

“We have obtained highly interesting data for our lead compounds under the Kv7 program in specific indications within neurology including epilepsy and pain as well as urinary incontinence. We will use the grant from the Danish Innovation Fund towards development of a new medicine for Painful Bladder Syndrome, which is an invalidating disease that forces patients to live with debilitating bladder pain and incontinence,” says Jørgen Drejer, CEO of Saniona.

The Kv7 program is in drug discovery phase. Saniona has data from animal models of Painful Bladder Syndrome, which demonstrates that Saniona’s compounds suppress both pain and incontinence in Painful Bladder Syndrome, thus reducing the two most debilitating symptoms of the disease. The grant from Danish Innovation Fund will support Saniona’s objective of selecting a drug candidate for preclinical and clinical development.

“There is no cure or effective treatment of Painful Bladder Syndrome. The existing treatments focus on relieving the symptoms, pain and incontinence, individually. However, the products have limited efficacy and often comes with significant side effects. Saniona’s Kv7 program may lead to an important novel and valuable therapy,” says Jørgen Drejer, CEO of Saniona.

For more information, please contact

Thomas Feldthus, EVP and CFO, Saniona, Mobile: +45 2210 9957, E-mail: tf@saniona.com

This information is such information as Saniona AB (publ) is obliged to make public pursuant to the EU Market Abuse Regulation. The information was submitted for publication, through the agency of the contact person set out above, at 10:40 a.m. CEST on June 28, 2018.

About Saniona

Saniona is a research and development company focused on drugs for diseases of the central nervous system, autoimmune diseases, metabolic diseases and treatment of pain. Saniona has four programs in clinical development including three late stage clinical programs focused on the development of treatments to effectively regulate obsessions, cravings and addictions related to food and drugs. Saniona intends to develop and commercialize treatments for orphan indications such as Prader-Willi syndrome on its own and engage in partnerships with larger entities for development programs aiming to treat large indications such as obesity. The company’s research is focused on ion channels, which makes up a unique protein class that enables and controls the passage of charged ions across cell membranes. Saniona has ongoing collaboration agreements with Boehringer Ingelheim GmbH, Productos Medix, S.A de S.V and Cadent Therapeutics. Saniona’s research center is based in Copenhagen, Denmark, and the company’s shares are listed at Nasdaq Stockholm Small Cap (OMX: SANION). Read more at www.saniona.com.
About Painful Bladder Syndrome (PBS)

According to American Urological Association guidelines, PBS is defined as pain associated with lower urinary tract symptoms (incontinence) of more than six weeks duration, in the absence of infection or other identifiable causes. It is estimated that PBS affects more than 10 million people in the United States alone, with the highest incidence in middle aged and elderly women. There is no cure for the disease. For most patients, life-long treatment relies on treating the symptoms; pain and incontinence individually. For incontinence, treatments show limited efficacy, high discontinuation rates and many side effects; indeed, patients often use diapers as an alternative. For chronic pain relief, efficacy is known to decrease over time, side effects are many, and addiction is often a consequence of long term use. New therapeutics against PBS are being developed. However, results from early studies with these new drugs show either similar low efficacy as conventional treatment or the increased efficacy comes at an increased risk of new side effects. E.g. injecting botulinum toxin A into the bladder wall thereby reducing incontinence is a new approved treatment against PBS. However, the treatment shows limited success and patients treated with botulinum toxin A is at a higher risk of chronic urinary tract infections as well as urine retention, where the patient needs to have a catheter inserted to urinate. Therefore, a successful development of a Kv7 channel-activator that relieves both pain and incontinence in PBS without the limited efficacy and the many side effects observed in treatments today will potentially give full access to a market with a strong unmet medical need.