

Seamless Therapeutics Announces Global Research Collaboration with Lilly to Develop Programmable Recombinase-based Therapeutics for Hearing Loss

- Collaboration will advance a next generation gene editing approach by combining Seamless' expertise in developing highly precise and efficient recombinases with Lilly's extensive development expertise in genetic hearing disorders --
- Companies will leverage Seamless' recombinase technology to develop therapeutics for defined hearing loss indications --

Dresden, Germany, and Lexington, MA, January 28, 2026 – [Seamless Therapeutics](#) announced today that it has entered into a strategic global research collaboration and licensing agreement with Eli Lilly and Company (“Lilly”) to develop and commercialize programmable recombinase-based treatments targeting hearing loss indications, using Seamless’ proprietary recombinase platform. The company’s technology performs large, precise DNA insertions in any target gene sequence, and operates independent of the cell’s natural DNA repair pathway.

Under the terms of the agreement, Seamless will design and program site-specific recombinases directed to correct mutations in certain genes of interest related to hearing loss. Lilly will receive an exclusive license to the programmed recombinases to advance through preclinical and clinical drug development and commercialization.

“Lilly is invested in advancing novel treatment approaches for genetic diseases and shares our vision of bringing genetic medicines to patients who currently have limited treatment options. This collaboration is a validation of our gene editing platform and its broad disease-modifying potential,” said **Albert Seymour, Ph.D., Chief Executive Officer of Seamless Therapeutics**. We look forward to working with our partners at Lilly in our shared goal to transform the outcome for patients with genetic hearing loss. It’s an exciting opportunity to apply our technology to bring treatments to patients with hearing loss and continue to expand the therapeutic potential for programmable recombinases through our proprietary pipeline.”

As part of the agreement, Seamless receives a guaranteed upfront payment and committed research and development funding. In total, Seamless is eligible for over \$1.12 billion, including potential development and commercial milestone payments, excluding tiered royalties on successfully marketed drugs. Further details of the agreement have not been disclosed.

Seamless is translating major breakthroughs in programming recombinases, a class of enzymes that have been widely used in scientific research for decades, transforming their accuracy and flexibility, to enable therapeutic gene editing. The company’s unique technology platform allows

for site-specific programmable recombinases that are engineered for specificity and activity in order to precisely insert, exchange, invert, or excise DNA fragments in any target gene sequence in the genome. By advancing Seamless' novel programmable recombinases, this agreement opens the potential for the technology to address a high unmet need in genetic hearing loss.

About Seamless Therapeutics

Seamless Therapeutics is changing the paradigm of gene editing through a pioneering approach that has the potential to address unmet medical needs in patients who suffer from severe conditions. Our technology platform unlocks the programming of recombinases, a highly versatile class of enzymes. We are applying our proprietary know-how to develop a pipeline of disease-modifying product candidates across a broad spectrum of indications to expand the therapeutic potential of gene editing.

For more information, please contact:

Seamless Therapeutics

Albert Seymour, CEO

Email: info@seamlesstx.com

Seamless Therapeutics media inquiries

Trophic Communications

Stephanie May and Eva Mulder

Tel: +49 171 1855682 or +31 6 52 33 15 79

Email: seamless@trophic.eu